The Calibration module is most useful for analytical laboratories and metrological departments. It contains linear and nonlinear calibration models. Automatic detection of departures from linearity can be requested. Due to the fact that the module implements weighted regression, it can be successfully used for models with heteroscedastic errors. This feature can be useful namely for analyzing low-level measurement data (e.g. trace analysis).
Calibration - Pdf manual
Calibration data example:
X |
Y |
Sample |
Repl1 |
Repl2 |
Repl3 |
1.281 |
25.53 |
No.1 |
33.69 |
33.74 |
33.73 |
1.281 |
25.58 |
No.2 |
39.25 |
39.25 |
39.27 |
2.558 |
51.37 |
No.3 |
50.6 |
|
|
2.558 |
51.23 |
No.4 |
57.3 |
|
|
5.430 |
106.4 |
|
|
|
|
5.430 |
108.7 |
|
|
|
|
7.373 |
148.4 |
|
|
|
|
7.373 |
146.6 |
|
|
|
|
11.59 |
233 |
|
|
|
|
Input panel
Different methods to determine detection limit
Interactive calibration plot with zoom feature
InteractiveCalibration calculator
Other diagnostic plots
Sample Text output:
Calibration |
|
|
|
|
|
|
|
|
|
Task name : |
Sheet36 |
|
|
|
|
|
|
|
|
Data size: |
17 |
|
|
|
Significance level : |
0.05 |
|
|
|
Choice of calibration model : |
Automatic |
|
|
|
Used calibration model : |
Linear |
|
|
|
Suitability of the model : |
Model is correct |
|
|
|
Weighted regression used : |
Yes |
|
|
|
|
|
|
|
|
Parameters of calibration model |
|
|
|
|
Parameter |
Estimate |
St. deviation |
C.I. Lower |
C.I. Upper |
Abs. |
0.035973483 |
0.018686223 |
-0.003855259 |
0.075802226 |
X |
1.000345445 |
0.006698099 |
0.986068785 |
1.014622106 |
|
|
|
|
|
Absolute term significance |
|
|
|
|
Value |
C.I. Lower |
C.I. Upper |
Conclusion |
|
0.035973483 |
-0.003855259 |
0.075802226 |
Insignificant |
|
|
|
|
|
|
Validation of slope |
|
|
|
|
Value |
C.I. Lower |
C.I. Upper |
Slope=1 |
|
1.000345445 |
0.986068785 |
1.014622106 |
Yes |
|
|
|
|
|
|
Sensitivity of the model : |
1.000345445 |
|
|
|
|
|
|
|
|
Chosen factor K : |
3 |
|
|
|
Computed Blank signal std. deviation : |
0.104747028 |
|
|
|
|
|
|
|
|
Analysis of residuals |
|
|
|
|
Residual sum of squares : |
0.164579099 |
|
|
|
Average absolute residual : |
0.069216963 |
|
|
|
Correlation coefficient : |
0.999523393 |
|
|
|
Index |
Measured X |
Measured Y |
Computed Y |
Weight |
1 |
0.31 |
0.38 |
0.351042915 |
12.24674589 |
2 |
1.31 |
1.30 |
1.343511625 |
11.9160705 |
3 |
1.56 |
1.58 |
1.59556717 |
11.70231418 |
4 |
1.56 |
1.58 |
1.59556717 |
11.70231418 |
5 |
2.52 |
2.53 |
2.556528936 |
9.915347572 |
6 |
2.65 |
2.72 |
2.682556709 |
9.536528779 |
7 |
2.66 |
2.72 |
2.69831018 |
9.486749624 |
8 |
4.39 |
4.44 |
4.431192054 |
3.194978968 |
9 |
4.54 |
4.61 |
4.572973298 |
2.83820524 |
10 |
4.58 |
4.66 |
4.620233713 |
2.728207814 |
11 |
7.64 |
7.73 |
7.6764072 |
0.527537807 |
12 |
7.64 |
7.73 |
7.6764072 |
0.527537807 |
13 |
7.65 |
7.59 |
7.692160671 |
0.52572007 |
14 |
7.70 |
7.97 |
7.739421086 |
0.520396645 |
15 |
9.86 |
9.79 |
9.897646693 |
0.388805078 |
16 |
9.86 |
9.79 |
9.897646693 |
0.388805078 |
17 |
9.81 |
9.60 |
9.850386278 |
0.390380962 |
One of the methods to estimate detection limits
|