Menu Content/Inhalt
TriloByte Home arrow QC-Expert
Probability models Print E-mail
< Prev   Next >
This module will be used where data distribution may not be normal, when normality is in doubt, or when type of distribution is known apriori, but the parameters of the distribution are needed. This module is essential when risk of exceeding a given value is to be assessed.

PDF Probability models - Pdf manual

Example:
Hg concentration in soil samples

Task: Find the true value and a 99% quantile of the distribution. What is the risk of exceeding the limit concentration of 8mg/kg?
Data:
ID Hg_Concentration
TE_R-006 1.1.1966
TE_R-617 1.1.1956
TE_R-512 1.1.1966
TE_R-807 1.1.1952
TE_R-271 1.1.1956
TE_R-624 1.1.1956
TE_R-908 1.1.1933
TE_R-911 1.1.1947
TE_R-945 1.1.1961
TE_R-753 1.1.1966
TE_R-449 1.1.1966
TE_R-692 1.1.1970
TE_R-272 1.1.1966
TE_R-781 1.1.1980
TE_R-823 1.1.1966
TE_R-117 1.1.1961
TE_R-968 1.1.1989
TE_R-389 2.8.2009
Dialog window:
Probability models 
Protocol:
Probabilistic models
Maximum likelihood method (MLE)
 
Task name : Sheet1
Data: All
 
List of analyzed distributions
Symetric models Parameters      
Distribution Likelihood P-P correlation A B    
Normal -181,6785248 0,9093237246 23673,33333 6015,475161    
Cauchy -180,2259792 0,9442434739 23673,33205 2058,729961    
Logisitic -180,7001734 0,9283511579 23673,33324 2987,734462    
Laplace -179,1624181 0,9243167929 24107,99995 3867,519046    
Uniform -184,3012672 0,7858115537 12055 40027    
 
Asymetric models Parameters      
Distribution Likelihood P-P correlation A B C  
Gamma -183,4977216 0,8804793092 9257,800497 5645,342342 2,802049929  
Gumbel -181,3723066 0,9240551682 20873,80725 5090,558443    
Triangular -181,7168227 0,880124682 9807,619917 41968,85541 23511,5318  
Exoponential -186,4862994 0,7621335177 12054,87945 11618,45345    
Weibull -182,1741659 0,8941368252 3123,866839 22986,89688 3,594183413  
Lognormal -180,950687 0,926506368 -10233,34365 10,41711622 0,1680905563  
 
Sample moments
Mean Variance Skewness Kurtosis Median    
23673,33333 36185941,41 0,9698171422 5,284355292 24108    
 
Model moments
Distribution Mean value Variance Skewness Kurtosis Median Modus
Normal 23673,33333 36185941,41 0 3 23673,33333 23673,33333
Cauchy not def. not def. not def. not def. 23673,33205 23673,33205
Logisitic 23673,33324 29367196,12 0 4,2 23673,33324 23673,33324
Laplace 24107,99995 29915407,14 0 6 24107,99995 24107,99995
Uniform 26041 65202732 0 1,8 26041 not def.
Gamma 25076,33161 89301023,48 1,194791325 2,141289467 - 19430,98927
Gumbel 23812,1573 42626468,18 1,1395 5,4 22739,56269 20873,80725
Triangular 25096,00238 43411529,56 0,1428981506 2,4 24740,82112 23511,5318
Exoponential 23673,3329 134988460,6 2 9 20108,1777 12054,87945
Weibull 23835,67984 40954627,69 0,001959281692 2,716462326 24968,10965 25091,4316
Lognormal 23669,13593 32938162,92 - - 23193,55545 22262,31508
 
Quantiles and probability
Distribution Probab(x=8) Quant(0,01) Quant(0,99)      
Normal 4,175876848E-005 9679,247478 37667,41919      
Logisitic 0,0003629694598 9944,338116 37402,33085      
Cauchy 0,02762135151 -41836,51353 89183,17716      
Laplace 0,0009833631026 8978,180302 39237,82262      
Uniform 0 12334,72 39747,28      
Gamma 0 11346,09658 54687,48048      
Gumbel 6,648953412E-027 13099,61245 44291,1337      
Triangular 0 11906,98456 39532,43967      
Exoponential 0 12171,64959 65559,83166      
Weibull 0 9515,806658 38280,99613      
Lognormal 9,789946631E-013 12375,1088 39188,77047      
Graphical output:
Probability models 
 
< Prev   Next >

Login

Seminars, Courses

Show All

Poll

What application is most suitable for you?
powered by www.trilobyte.cz